ELSEVIER

Contents lists available at ScienceDirect

Bioorganic & Medicinal Chemistry Letters

journal homepage: www.elsevier.com/locate/bmcl

Discovery of 2-aminoimidazopyridine adenosine A_{2A} receptor antagonists

Brian F. McGuinness, Andrew G. Cole, Guizhen Dong, Marc-Raleigh Brescia, Yuefei Shao, Ian Henderson, Laura L. Rokosz, Tara M. Stauffer, Neelima Mannava, Earl F. Kimble, Catherine Hicks, Nicole White, Pamela G. Wines, Elizabeth Ouadros

Ligand Pharmaceuticals, Inc.,[†] 3000 Eastpark Boulevard, Cranbury, NJ 08512, USA

ARTICLE INFO

Article history:
Received 23 July 2010
Revised 12 August 2010
Accepted 12 August 2010
Available online 19 August 2010

Keywords:
Adenosine
A_{2A} receptor
Imidazopyridine
Combinatorial chemistry
Parkinson's disease

ABSTRACT

A novel series of adenosine A_{2A} receptor antagonists was identified by high-throughput screening of an encoded combinatorial compound collection. The initial hits were optimized for A_{2A} binding affinity, A_1 selectivity, and in vitro microsomal stability generating orally available 2-aminoimidazo[4,5-b]pyridine-based A_{2A} antagonist leads.

© 2010 Published by Elsevier Ltd.

Adenosine mediates various biological functions through its interaction with a family of G-protein-coupled receptors. To date, four subtypes of adenosine receptors (A₁, A_{2A}, A_{2B}, and A₃) have been identified and each exhibits a unique expression pattern and physiological role. Adenosine receptor subtype A_{2A}, located in the striatum of the brain, contributes to the regulation of motor activity by modulating dopamine D₂ receptor activation.² Hence, inhibition of the interaction of adenosine with the A_{2A} receptor may provide a potential treatment for Parkinson's disease.3 Notably, A2A antagonists such as xanthine KW-6002,4 pyrazolotriazolopyrimidine SCH420814,⁵ and triazolopyrimidine V2006/BIIB-014⁶ have advanced to human clinical trials for motor-related disorders. In addition, chemotypes such as thiazolopyrimidines, benzofurans, benzofurans, and 6-furanyl-4-carboxamidylpyrimidines⁹ have been recently disclosed as A_{2A} antagonists. In our efforts, high-throughput screening of an extensive encoded combinatorial compound collection 10 (\sim 4.5 million compounds screened) also identified multiple active chemotypes. We have recently reported the discovery of substituted aminothiazoles11 and trisubstituted purinones12 as A2A receptor antagonists identified through this screening campaign. Herein, the optimization of a third chemotype, based on a 2-aminoimidazopyridine scaffold, identified via this high-throughput screen is discussed.

The initial hit, benzimidazole 1a, was an active A_{2A} antagonist (46 nM) but lacked microsomal stability (11% remaining after 0.5 h treatment with human liver microsomes). Intriguingly, the hit lacked a furan moiety, a common feature of non-xanthine a antagonists. Hence, a hit to lead effort was initiated with the goal of converting this active in vitro hit into an orally available, brain penetrant lead molecule. In addition, selectivity against the a receptor subtype was considered desirable in light of the potential for cardiovascular or renal effects associated with antagonism of the a subtype.

Benzimidazoles **1a–1h** were synthesized via the solid-phase route outlined in Scheme 1. Acid-cleavable linker 4-(4'-formyl-3'-methoxy)phenoxy butyric acid¹⁶ was coupled to amino-TentaGel generating resin **6**. Reductive amination with 3-methoxybenzylamine followed by HATU-mediated coupling of 4-fluoro-3-nitrobenzoic acid produced intermediate **8**. Subsequent fluorine displacement, nitro reduction, and cyclization with cyanogen bromide yielded resin-bound aminobenzimidazole **11**, a key intermediate which enabled access to various R³ substitutions on the 2-amino group of the benzimidazole core.

The unsubstituted aminobenzimidazole 1b (generated via direct cleavage of resin-bound intermediate 11) exhibited a dramatic drop in binding affinity with the A_{2A} receptor (Table 1). Additionally, analogs containing smaller alkyl secondary amides or tertiary amides in this R^3 position were inactive (data not shown). Hence, a focus was placed on optimizing the substitution of the benzoyl amide.

^{*} Corresponding author. Tel.: +1 609 570 1000x1527; fax: +1 609 570 1050. E-mail address: bmcguinness@venenumbiodesign.com (B.F. McGuinness).

 $^{^\}dagger$ In 2008, Pharmacopeia, Inc. was acquired by Ligand Pharmaceuticals, Inc.

Scheme 1. Solid-phase synthesis of analogs **1a–1h**. Initial resin **6** = TentaGel resin harboring an acid-cleavable 4-(4'-formyl-3'-methoxy)phenoxybutyric acid linker.¹⁷ Reagents and conditions: (a) 3-methoxybenzylamine, Na(OAc)₃BH, DCE, rt; (b) 3-nitro-4-fluorobenzoic acid, HATU, DIEA, DMF, rt; (c) 3-methoxypropylamine, DMF, rt; (d) SnCl₂, DMF, rt; (e) BrCN, DMF, rt; (f) substituted benzoic acid, HATU, DIEA, DMF, rt; (g) 50% TFA/DCM (v/v), rt.

Table 1 SAR for R³ 2-aminobenzimidazole analogs

Compds	R^3	Human A_{2A} binding K_i $(nM)^{16}$
1a	3-Cyanobenzoyl	46
1b	Н	6770
1c	3-Fluorobenzoyl	210
1d	3-Chlorobenzoyl	439
1e	3-Trifluoromethylbenzoyl	>10,000
1f	3-Methoxybenzoyl	2380
1g	2-Chlorobenzoyl	4710
1h	4-Cyanobenzoyl	1670

As is demonstrated in Table 1, alternative electron-withdrawing substituents such as 3-fluoro (**1c**) and 3-chloro (**1d**) suffered five or 10-fold reductions in binding affinity, respectively, when compared to the 3-cyano parent (**1a**). The more lipophilic electron-withdrawing 3-trifluoromethyl group (**1e**) was inactive in the assay. Substitution with an electron-donating methoxy group on the 3-position of the benzamide also produced a weakly active analog (**1f**). Relocation of the electron-withdrawing group to either the 2-position (**1g**) or 4-position (**1h**) on the ring also led to a drop in affinity.

Similarity between the 2-aminobenzamidazole core of these compounds and the 2-aminobenzothiazole core of previously disclosed A_{2A} antagonists¹⁸ was noted. However, various benzoyl substitution patterns were allowed on the previously disclosed 2-aminobenzothiazole scaffold.¹⁸ In contrast, as indicated in Table 1, the 3-cyano substitution on this 2-aminobenzamidazole (**1a**)

 Table 2

 Effect of central ring system on in vitro microsome stability

Compds	R ¹	X	Human A_{2A} binding K_i (nM)	Liver microsome stability (% remaining-0.5 h) ¹³	
				Rat	Human
2a	n-Butylamino	СН	48	38%	27%
2b	n-Butylamino	N	40	73%	95%
2c	Piperidinyl	CH	48	16%	67%
2d	Piperidinyl	N	9.6	36%	90%

Scheme 2. Solution-phase synthesis route for analogs 2-4. Reagents and conditions: (a) R²NH₂, THF, rt; (b) Na₂S₂O₄, NaHCO₃, 1,4-dioxane/H₂O; rt; (c) BrCN, MeOH, rt; (d) 3-cyanobenzoic acid, EDC, HOBt, DCM, rt; (e) LiOH, 1,4-dioxane, H₂O, 80 °C; (f) R¹RNH, EDC, HOBt, DCM, rt.

Scheme 3. Alternative route for analogs 2–4. Reagents and conditions: (a) R¹RNH, DIEA, DCM; rt; (b) R²NH₂, THF, rt; (c) Na₂S₂O₄, NaHCO₃, 1,4-dioxane/H₂O, rt; (d) 3-cyanobenzoyl isothiocyanate¹⁸, DCM, EDC, Et₃N, rt.

uniquely provided high binding affinity. This 3-cyanobenzoyl group was held constant through further optimization efforts.

A limited set of examples indicated increased microsomal stability when the benzimidazole core was replaced with an imidazo[4,5-b]pyridine core (Table 2; compare **2a** to **2b** and **2c** to **2d**). Since this change did not negatively affect binding affinity and the potential for added microsomal stability was desirable, the imidazopyridine series was the main focus moving forward.

A solution-phase synthetic route (Scheme 2) was employed for the generation of imidazopyridine analogs aimed at understanding the SAR of the R¹ and R² moieties. The appropriate *ortho*-nitro, halogen-substituted benzoic ester was reacted with an amine to generate intermediate **12**. Nitro reduction to diamine **13**, cyclization with cyanogen bromide to **14**, and coupling with 3-cyanobenzoic acid produced ester **15**. Hydrolysis yielded acid **16** which was converted to the analogs **2–4** via carbodiimide-mediated amide formation. Alternatively, as outlined in Scheme 3, acid chloride **17** could be reacted with two sequential amines to generate intermediate **18**. Nitro reduction and cyclization with 3-cyanobenzoyl isothiocyanate¹⁹ yielded the desired analogs **2–4**.

As suggested by the human A_{2A} binding affinity of compounds in Table 2, elimination of the original R^1 3-methoxybenzyl moiety was tolerated allowing a reduction of the molecular weight. While simplification to the primary amide was not allowed (Table 3; **3a**), analog **2d** suggested that tertiary amides might be preferred, thereby removing one undesired hydrogen bond donor from this potential CNS molecule. As demonstrated in Table 3, other tertiary

Table 3 SAR for R¹ 2-aminoimidazopyridine analogs

Compds	R ¹	Human A _{2A} binding K _i (nM)	Rat A _{2A} cAMP K _i (nM) ¹⁹	A ₁ /A _{2A} ratio
3a	H ₂ N—§	2430	ND	ND
3b	N-\$	123	ND	30
3c	N-\$	25	24	48
3d	N{	16	59	97
3e	N—\$	13	12	237
2d	N	9.6	52	93
3f		7.7	6.4	234
3g	N-\$	11	14	120

amides were indeed tolerated. While the highly simplified dimethylamide analog **3b** had less affinity than **1a**, slightly larger alkyl amides were more tightly bound (**3c** and **3d**).

An in vitro cAMP functional assay was employed to further characterize the activity of these analogs in rat cells (Table 3).²⁰ Sterically crowded R¹ alkylamides (as in analogs **3e–3g**) imparted enhanced activity in this cAMP functional assay. In addition, these sterically crowded R¹ analogs demonstrated improved selectivity against the A₁ receptor subtype.

The compounds discussed thus far have harbored a fixed 3-methoxypropyl moiety at the N3-position of the imidazole ring. Changes to this R^2 position were explored while maintaining a simple N-piperidinylamide in the R^1 position (Table 4; **4a-4j**).

Table 4SAR for R² 2-aminoimidazopyridine analogs

Compds	Y	R ²	Human A _{2A} binding K _i (nM)	A ₁ /A _{2A} ratio
2d	CH ₂	~~_O	9.6	93
4a	CH ₂	CH3	147	22
4b	CH ₂	rr	904	3
4 c	CH ₂	ww. OH	51	10
4d	CH ₂		179	10
4e	CH ₂	WL HN	37	>46
4f	CH ₂	0	325	2
4 g	CH ₂	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1220	7
4h	CH ₂	F	2590	3
4i	CH ₂	w N	233	4
4 j	CH ₂	N	35	39
4k	0	~~~_O	92	61
41	0	m_0_	3300	1.8
4m	0	~~~_O	1100	9
4n	0	~~~_O	>10,000	-

Scheme 4. Synthesis of analogs **5a–5d**. Reagents and conditions: (a) 3-methoxy-propylamine, DIEA, THF, rt, 83%; (b) CO, EtOH, Et₃N, PdCl₂(PPh₃)₂, 70 °C, 37%; (c) procedures outlined in Scheme 3.

Truncation of the longer 3-methoxypropyl chain (2d) to a simplified methyl group (4a) resulted in a 15-fold drop in binding affinity for the A_{2A} receptor. Replacement of the oxygen in the methoxypropyl group with a methylene (4b) caused an even sharper drop in affinity. However, the hydroxypropyl analog 4c exhibited only a minor loss of affinity for the receptor. Hence, it was hypothesized that the oxygen of this chain served as a hydrogen bond acceptor with the A_{2A} receptor. Replacement with a different functional group capable of accepting a hydrogen bond, for instance an acetamide (4e), was tolerated lending support to the hypothesis. The aromatic analogs in this series (4f-4i) also support the requirement for a hydrogen bond acceptor. Para-fluorobenzyl analog 4h is a comparatively weak binder of the A2A receptor in relation to the pyridinylmethyl analogs 4i and 4j. The location of the hydrogen bond accepting moiety is important since the 3-pyridylmethyl analog 4i is sixfold less tightly bound then the 4-pyridylmethyl analog **4j**. Additionally, the 3-methoxyphenyl analog **4f** is fourfold more tightly bound than the 4-methoxybenzyl analog 4g. Surprisingly, the 3-methoxybenzyl analog (not shown) was inactive in the assay.

A series of relatively conservative modifications to the 3-methoxypropyl R³ group was tested while maintaining a *N*-morpholino amide in the R¹ position (**4k**-**4n**). When compared to the 3-methoxypropyl analog **4k**, relocation of the oxygen closer to

the imidazopyridine core (**4I**) was detrimental to the binding affinity. Extension of the methoxy group to an ethoxy (**4m**) or isopropoxy group (**4n**) was also not tolerated.

Clearly, the 3-methoxypropyl chain (2d) was providing an optimal electronic and steric display to the A_{2A} receptor. In addition, none of the changes outlined in Table 4 enhanced selectivity against the A_1 receptor subtype.

Since the R¹ amide proved to be the most tolerant toward change, the possibility of relocating this functional group from the 6-position to the 5-position of the imidazopyridine was explored. The synthesis of these analogs (**5a-5d**) is outlined in Scheme 4. Treatment of 2,6-dichloro-3-nitropyridine (**19**) with 3-methoxypropylamine led to intermediate **20**. Palladium-catalyzed carbonylation²¹ generated ester **21** which was converted to the desired analogs via the steps outlined in Scheme 3.

In general the SAR for the 5-substituted amides was similar to the 6-position amide analogs (Table 5). Again, small alkyl tertiary amides were preferred at R^1 with the N-methyl-N-isopropylamide derivative ${\bf 5d}$ exhibiting high activity in both the A_{2A} binding and functional assays. The 5-carboxamido-substituted analogs were generally less stable to microsomes than their 6-substituted counterparts. However, analog ${\bf 5c}$ was particularly notable since it maintained moderate stability in the liver microsome assay.

Selected compounds which exhibited activity in the cAMP functional assay, A_1 selectivity, and in vitro microsomal stability were tested for brain levels in rat after oral dosing.²² A comparison of two example analogs is provided in Table 6. Analog **5c** exhibited the best overall profile of desired in vitro activity, good plasma exposure, and modest brain levels after oral dosing in the rat.

In summary, a novel class of A_{2A} antagonists has been discovered via a high-throughput screen. These analogs represent the third chemotype of A_{2A} antagonists identified from an encoded combinatorial compound collection. Initial optimization of this series led to the synthesis of 2-aminoimidazopyridine **5c**, an orally available A_{2A} antagonist ($K_i = 12 \text{ nM}$) which exhibits 80-fold selectivity against the A_1 receptor and activity in an in vitro cAMP accumulation assay.

Table 5SAR for 5-carboxamidoimidazopyridine analogs

Compds	R^1	Х	hA _{2A} binding K _i (nM)	rA _{2A} cAMP K _i (nM)	A ₁ /A _{2A} ratio	Liver micro	Liver microsome stability (% remaining-0.5 h)	
						Rat	Human	
5a	N-\$	СН	3.1	16	183	19%	36%	
5b	N	СН	17	85	131	12%	19%	
5c	N—§	N	12	23	80	52%	52%	
5d	— N—₹	N	2.5	4.3	88	14%	25%	

Table 6Brain levels in rat at 1 and 4 h (po; 30 mpk).²²

Compds	Plasma level (ng/mL) 1 h	Plasma level (ng/mL) 4 h	Brain level (ng/g) 1 h	Brain level (ng/g) 4 h	Brain/plasma ratio 1 h/4 h
3c	4360	2290	480	210	0.11/0.09
5c	4630	2380	1050	450	0.23/0.19

References and notes

- 1. Jacobson, K. A. Handbook Exp. Pharmacol. 2009, 193, 1-24.
- (a) Kalda, A.; Yu, L.; Oztas, E.; Chen, J.-F. J. Neurol. Sci. 2006, 248, 9; (b) Mally, J.; Stone, T. W. CNS Drugs 1998, 10, 311; (c) Pinna, A.; Wardas, J.; Simola, N.; Morelli, M. Life Sci. 2005, 77, 3259.
- (a) Pinna, A. Expert Opin. Investig. Drug 2009, 18, 1619; (b) Simola, N.; Morelli, M.; Pinna, A. Curr. Pharm. Des. 2008, 14, 1475.
- 4. Jenner, P. Expert Opin. Investig. Drug 2005, 14, 729.
- Neustadt, B. R.; Hao, J.; Lindo, N.; Greenlee, W. J.; Stamford, A. W.; Tulshian, D.; Ongini, E.; Hunter, J.; Monopoli, A.; Bertorelli, R.; Foster, C.; Arik, L.; Lachowicz, J.; Ng, K.; Feng, K.-I. Bioorg. Med. Chem. Lett. 2007, 17, 1376.
- Gillespie, R. J.; Bamford, S. J.; Botting, R.; Comer, M.; Denny, S.; Gaur, S.; Griffin, M.; Jordan, A. M.; Knight, A. R.; Lerpiniere, J.; Leonardi, S.; Lightowler, S.; McAteer, S.; Merrett, A.; Misra, A.; Padfield, A.; Reece, M.; Saadi, M.; Selwood, D. L.; Stratton, G. C.; Surry, D.; Todd, R.; Tong, X.; Ruston, V.; Upton, R.; Weiss, S. M. J. Med. Chem. 2009, 52, 33.
- 7. Luthra, P. M.; Mishra, C. B.; Jha, P. K.; Barodia, S. K. *Bioorg. Med. Chem. Lett.* **2010**, 20, 1214.
- 8. Saku, O.; Saki, M.; Kurokawa, M.; Ikeda, K.; Takizawa, T.; Uesaka, N. *Bioorg. Med. Chem. Lett.* **2010**, 20, 1090.
- Gillespie, R. J.; Bamford, S. J.; Gaur, S.; Jordan, A. M.; Lerpiniere, J.; Mansell, H. L.; Stratton, G. C. Bioorg. Med. Chem. Lett. 2009, 19, 2664.
- (a) Ohlmeyer, M. H. J.; Swanson, R. N.; Dillard, L.; Reader, J. C.; Asouline, G.; Kobayishi, R.; Wigler, M.; Still, W. C. *Proc. Natl. Acad. Sci. U.S.A.* 1993, 90, 10922; (b) Burbaum, J. J.; Ohlmeyer, M. H. J.; Reader, J. C.; Henderson, I.; Dillard, L. W.; Li, G.; Randle, T. L.; Sigal, N. H.; Chelsky, D.; Baldwin, J. J. *Proc. Natl. Acad. Sci. U.S.A.* 1995, 92, 6027.
- Cole, A. G.; Stauffer, T. M.; Rokosz, L. L.; Metzger, A.; Dillard, L. W.; Zeng, W.; Henderson, I. Bioorg. Med. Chem. Lett. 2009, 19, 378.
- Shao, Y.; Cole, A. G.; Brescia, M.-R.; Qin, L.-Q.; Duo, J.; Stauffer, T. M.; Rokosz, L. L.; McGuinness, B. F.; Henderson, I. Bioorg. Med. Chem. Lett. 2009, 19, 1399.
- For details of the liver microsome assay see: Merritt, J. R.; Liu, J.; Quadros, E.; Morris, M. L.; Liu, R.; Zhang, R.; Jacob, B.; Postelnek, J.; Hicks, C. M.; Chen, W.; Kimble, E. F.; Rogers, W. L.; O'Brien, L.; White, N.; Desai, H.; Bansal, S.; King, G.; Ohlmeyer, M. J.; Appell, K. C.; Webb, M. L. J. Med. Chem. 2009, 52, 1295.
- Richardson, C. M.; Gillespie, R. J.; Williamson, D. S.; Jordon, A. M.; Fink, A.; Knight, A. R.; Sellwood, D. M.; Misra, A. Bioorg. Med. Chem. Lett. 2006, 16, 5993.
- 15. Nell, P. G.; Albrecht-Kuepper, B. Prog. Med. Chem. 2009, 47, 163.
- 16. For details on the A_{2A} and A_1 binding assays see the footnotes of Ref. 11. The values are reported as the mean of at least two determinations.
- (a) Williams, G. M.; Carr, R. A. E.; Congreve, M. S.; Kay, C.; McKeown, S. C.; Murray, P. J.; Scicinski, J. J.; Watson, S. P. Angew. Chem., Int. Ed. 2000, 39, 3293;

- (b) Cole, A. G.; Metzger, A.; Ahmed, G.; Brescia, M.-R.; Chan, R. J.; Wen, J.; O'Brien, L.; Qin, L.-Y.; Henderson, I. *Tetrahedron Lett.* **2006**, 47, 8897.
- (a) Alanine, A.; Flohr, A.; Miller, A. K.; Norcross, R. D.; Riemer, C. PCT Int. Appl. WO2001097786, 2001; (b) Flohr, A.; Jakob-Roetne, R.; Norcross, R. D.; Riemer, C. PCT Int. Appl. WO 2003045386, 2003; (c) Flohr, A.; Norcross, R. D. U.S. Pat. Appl. Publ. US 2004204584, 2004.
- 19. Frank, R. L.; Smith, P. V. Org. Synth. Coll. 1955, 3, 735.
- A rat functional assay was chosen to support in vivo rat model studies. Rat pheochromocytoma (PC-12) cells (ATCC, CRL-1721) were maintained in 1x Ham's F12 medium (Invitrogen) supplemented with 10% horse serum (Invitrogen), 2% FBS (Invitrogen), and 1× Penn/Strep (Invitrogen) in rat tail collagen (BD Biosciences)-treated tissue culture flasks. cAMP was quantified using the Perkin Elmer LANCE™ cAMP 384 kit. On the day of the assay, 5000 PC-12 cells were pre-incubated with compound for 15 min and then stimulated with 50 nM CGS-21680 for 15 min in a final volume of 18 μ L. Assay was conducted in $1 \times$ HBSS (Invitrogen), 5 mM HEPES (Invitrogen), 0.05% BSA, (Sigma), 50 μM rolipram (Sigma), pH 7.4 buffer at 37 °C/5% CO₂. Final DMSO concentration was 0.5%. Following stimulation, the cells were lysed with cAMP detection solution provided with the assay kit. Signal was allowed to develop for 1 hour and detected using the EnVision™ Multiplate Reader or the Victor™ Multilabel counter (Perkin Elmer). Assays were performed in duplicate and compounds were tested a minimum of two times. The data were fit to a one-site competition binding model for IC50 determination using the program GraphPad Prism (GraphPad Software, Inc., San Diego, CA) and K_i values were calculated using the Cheng-Prusoff equation.
- (a) El-ghayoury, A.; Ziessel, R. J. Org. Chem. 2000, 65, 7757; (b) Schoenberg, A.; Bartoletti, I.; Heck, R. F. J. Org. Chem. 1974, 39, 3318.
- 22. Procedure for the rat brain level determination: male Sprague–Dawley rats were used for all studies. Rats were acclimated to the vivarium for 5–7 days before each study. On the day before the study, the rats were fasted overnight (18–20 h) but allowed free access to water. The next day, each rat was weighed and dosed (based on the individual animal's body weight) via oral intubation with test compounds suspended in 0.5%MC. One, 2 or 4 h after compound administration rats (two/group) were euthanized by CO₂ asphyxiation. Blood was collected by cardiac puncture and plasma prepared. Brain tissue was collected following organ perfusion to remove any excess blood. The brain tissue was homogenized on ice in cold PBS. The plasma and homogenized brain tissue were stored frozen until the time of analysis using LC/MS/MS. Standards curves, quality control and appropriate blank samples were included and all samples were analyzed. Results were expressed as the brain/plasma ratio (ng/g) at the specified time.